# app/services/file_service.py import os import pandas as pd from werkzeug.utils import secure_filename from app.config import Config from app import db from app.models.trench_excavation_model import TrenchExcavation from app.utils.file_utils import ensure_upload_folder class FileService: def allowed_file(self, filename): return "." in filename and filename.rsplit(".", 1)[1].lower() in Config.ALLOWED_EXTENSIONS def handle_file_upload(self, file, subcontractor_id, file_type): if not subcontractor_id: return False, "Please select subcontractor." if not file_type: return False, "Please select file type." if not file or file.filename == "": return False, "No file selected." if not self.allowed_file(file.filename): return False, "Invalid file type! Allowed: CSV, XLSX, XLS" ensure_upload_folder() folder = os.path.join(Config.UPLOAD_FOLDER, f"sub_{subcontractor_id}") os.makedirs(folder, exist_ok=True) filename = secure_filename(file.filename) filepath = os.path.join(folder, filename) file.save(filepath) try: df = pd.read_csv(filepath) if filename.endswith(".csv") else pd.read_excel(filepath) print("\n=== Uploaded File Preview ===") print(df.head()) print("=============================\n") if file_type == "trench_excavation": return self.process_trench_excavation(df, subcontractor_id) return True, "File uploaded successfully." except Exception as e: return False, f"Processing failed: {e}" # CLEAN & SAVE TRENCH EXCAVATION DATA def process_trench_excavation(self, df, subcontractor_id): # Clean column names (strip whitespace) df.columns = [str(c).strip() for c in df.columns] # If the sheet has merged cells -> forward fill Location if "Location" in df.columns: df["Location"] = df["Location"].ffill() # REMOVE empty rows df = df.dropna(how="all") # Identify missing location rows before insert missing_loc = df[df["Location"].isna() | (df["Location"].astype(str).str.strip() == "")] if not missing_loc.empty: return False, f"Error: Some rows have empty Location. Rows: {missing_loc.index.tolist()}" saved_count = 0 try: for index, row in df.iterrows(): record_data = {} # Insert only fields that exist in model for col in df.columns: if hasattr(TrenchExcavation, col): value = row[col] # Normalize empty values if pd.isna(value) or str(value).strip() in ["", "-", "—", "nan", "NaN"]: value = None record_data[col] = value record = TrenchExcavation( subcontractor_id=subcontractor_id, **record_data ) db.session.add(record) saved_count += 1 db.session.commit() return True, f"Trench Excavation data saved successfully. Total rows: {saved_count}" except Exception as e: db.session.rollback() return False, f"Trench Excavation Save Failed: {e}"